FRIGIDA-related genes are required for the winter-annual habit in Arabidopsis.

نویسندگان

  • Scott D Michaels
  • Isabel C Bezerra
  • Richard M Amasino
چکیده

In temperate climates, the prolonged cold temperature of winter serves as a seasonal landmark for winter-annual and biennial plants. In these plants, flowering is blocked before winter. In Arabidopsis thaliana, natural variation in the FRIGIDA (FRI) gene is a major determinate of the rapid-cycling vs. winter-annual flowering habits. In winter-annual accessions of Arabidopsis, FRI activity blocks flowering through the up-regulation of the floral inhibitor FLOWERING LOCUS C (FLC). Most rapid-flowering accessions, in contrast, contain null alleles of FRI. By performing a mutant screen in a winter-annual strain, we have identified a locus, FRIGIDA LIKE 1 (FRL1), that is specifically required for the up-regulation of FLC by FRI. Cloning of FRL1 revealed a gene with a predicted protein sequence that is 23% identical to FRI. Despite sequence similarity, FRI and FRL1 do not have redundant functions. FRI and FRL1 belong to a seven-member gene family in Arabidopsis, and FRI, FRL1, and at least one additional family member, FRIGIDA LIKE 2 (FRL2), are in a clade of this family that is required for the winter-annual habit in Arabidopsis.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

FRIGIDA-ESSENTIAL 1 interacts genetically with FRIGIDA and FRIGIDA-LIKE 1 to promote the winter-annual habit of Arabidopsis thaliana.

Studies of natural variation have revealed that the winter-annual habit of many accessions of Arabidopsis is conferred by two genes, FRIGIDA (FRI) and FLOWERING LOCUS C (FLC), whose activities impose a vernalization requirement. To better understand the mechanism underlying the winter-annual habit, a genetic screen was performed to identify mutants that suppress the late-flowering behavior of a...

متن کامل

Two FLX family members are non-redundantly required to establish the vernalization requirement in Arabidopsis

Studies of natural genetic variation for the vernalization requirement in Arabidopsis have revealed two genes, FRIGIDA and FLOWERING LOCUS C (FLC), that are determinants of the vernalization-requiring, winter-annual habit. In this study, we show that FLOWERING LOCUS C EXPRESSOR-LIKE 4 (FLL4) is essential for upregulation of FLC in winter-annual Arabidopsis accessions and establishment of a vern...

متن کامل

Establishment of the winter-annual growth habit via FRIGIDA-mediated histone methylation at FLOWERING LOCUS C in Arabidopsis.

In Arabidopsis thaliana, flowering-time variation exists among accessions, and the winter-annual (late-flowering without vernalization) versus rapid-cycling (early flowering) growth habit is typically determined by allelic variation at FRIGIDA (FRI) and FLOWERING LOCUS C (FLC). FRI upregulates the expression of FLC, a central floral repressor, to levels that inhibit flowering, resulting in the ...

متن کامل

Establishment of the vernalization-responsive, winter-annual habit in Arabidopsis requires a putative histone H3 methyl transferase.

Winter-annual accessions of Arabidopsis thaliana are often characterized by a requirement for exposure to the cold of winter to initiate flowering in the spring. The block to flowering prior to cold exposure is due to high levels of the flowering repressor FLOWERING LOCUS C (FLC). Exposure to cold promotes flowering through a process known as vernalization that epigenetically represses FLC expr...

متن کامل

Growth habit determination by the balance of histone methylation activities in Arabidopsis.

In Arabidopsis, the rapid-flowering summer-annual versus the vernalization-requiring winter-annual growth habit is determined by natural variation in FRIGIDA (FRI) and FLOWERING LOCUS C (FLC). However, the biochemical basis of how FRI confers a winter-annual habit remains elusive. Here, we show that FRI elevates FLC expression by enhancement of histone methyltransferase (HMT) activity. EARLY FL...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 101 9  شماره 

صفحات  -

تاریخ انتشار 2004